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Feedback control of the Rayleigh–B�enard convection
by means of mode reduction
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SUMMARY

An optimal feedback control is synthesized for the Rayleigh–B�enard convection by means of empirical
reduction of modes. The Boussinesq equation is reduced to a minimal set of ordinary di�erential equa-
tions by using the Karhunen–Lo�eve Galerkin procedure. The state feedback control synthesis, that drives
the intensity of convection to a preset trajectory by adjusting heat �ux at the bottom of the system, is
constructed using this low-dimensional dynamic model by �rst performing an extended Kalman �lter
estimate of the velocity and temperature �elds and then developing the optimal feedback law by means
of the linear regulator theory. The present technique allows for the practical implementation of modern
control concepts to the natural convection and is found to yield satisfactory results. Copyright ? 2002
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Rayleigh–B�enard convection is a classic problem of natural convection for a horizontal
�uid layer heated from below, and is a �rst approach to highly complex thermal convection
processes in industry. The dimensionless number corresponding to the temperature gradient in
the system is the Rayleigh number, and convection sets in only when the Rayleigh number is
above the critical value. The determination of the critical Rayleigh number and how the inten-
sity of the convection varies with the Rayleigh number are well documented in Chandrasekhar
[1] and Drazin and Reid [2]. In many industrial applications it may be desirable to return the
pattern of convection to a preset one or to make it follow a prescribed trajectory promptly
by exploiting the velocity or temperature measurements when there are initial deviation or
disturbance. These are typical feedback control problems [3]. In the present investigation, we
develop an applicable method of optimal state feedback control for the Rayleigh–B�enard con-
vection, that enforces the system to return to the preset state promptly by adjusting the heat
�ux at the bottom of the domain. The feedback controller determines the control inputs of the
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928 H. M. PARK AND W. J. LEE

system, i.e. the spatial distribution of heat �ux at the bottom, on the basis of the observations
of the present velocity and temperature �elds, thus reducing the e�ect of external disturbances
and uncertainties. In reality, we can measure the velocity and temperature only at a limited
number of locations and the complete state, needed in the state feedback control scheme, must
be estimated from these partial observations by means of an identi�cation scheme. Thus, the
design of an optimal feedback control is divided into two parts: the linear quadratic regulator
(LQR) and the minimum variance estimator (Kalman �lter). LQR provides an optimal control
law in terms of the present state of the system [3]. The Kalman �lter provides an optimal
estimate of the present state based on the partial measurements available [4]. But the straight-
forward implementation of the above scheme on the governing equation of natural convection,
the Boussinesq set, encounters a serious di�culty. The tremendous requirement of computer
time and memory to solve the covariance equations in the Kalman �lter and LQR renders this
scheme virtually useless. The only way of circumventing this di�culty is to devise a reduced
order model or a low-dimensional dynamic model that simulates the system faithfully. An
appropriate technique for this purpose is the Karhunen–Lo�eve Galerkin procedure.
The Karhunen–Lo�eve Galerkin procedure [5, 6] is a type of Galerkin method that employs

the empirical eigenfunctions of the Karhunen–Lo�eve decomposition [7] as basis functions.
The Karhunen–Lo�eve decomposition had been devised as a rational technique enabling a
stochastic �eld to be represented with a minimum degree of freedom. If the Karhunen–Lo�eve
decomposition is applied to a given stochastic �eld, we get a set of empirical eigenfunctions.
When we want to reproduce the same stochastic �eld, it can be done with a minimum de-
gree of freedom by using these empirical eigenfunctions. Recently, the applicability of the
Karhunen–Lo�eve decomposition had been extended to the analysis of non-stationary, non-
homogeneous deterministic as well as stochastic �elds to allow the derivation of rigorous
reduced order models that stimulate the given systems almost exactly [5, 6]. This extension
of the original Karhunen–Lo�eve decomposition is called the Karhunen–Lo�eve Galerkin pro-
cedure. By employing the empirical eigenfunctions of the Karhunen–Lo�eve decomposition as
basis functions, the Karhunen–Lo�eve Galerkin procedure can a priori limit the function space
considered to the smallest subspace that is su�cient to describe the observed solutions, and
consequently reduce the given partial di�erential equations to a minimal set of ordinary dif-
ferential equations. In Park and Lee [8], the Karhunen–Lo�eve Galerkin procedure is employed
to solve an open-loop optimal control problem of the Navier–Stokes equation. But the open-
loop control is generally not useful for practical applications, and a more practical and useful
control scheme is obtained by introducing the concept of feedback which allows to determine
the control inputs of the system on the basis of the observations of the present state. The
use of feedback is, in particular, important when the dynamics of the system is only partially
known due to the presence of uncertainty and external disturbances. In the present investiga-
tion, we employ the Karhunen–Lo�eve Galerkin procedure to construct a feedback control for
the Rayleigh–B�enard convection. The details of the Karhunen–Lo�eve Galerkin procedure are
explained in our previous works [5, 6, 8].

2. GOVERNING EQUATIONS

We consider a two-dimensional rectangular cavity �lled with a Boussinesq �uid. Due to the
heat �ux imposed at the bottom boundary, natural convection is induced in the domain. Our
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KARHUNEN–LO�EVE GALERKIN PROCEDURE 929

aim is to drive the pattern of convection to a preset trajectory by adjusting heat �ux at
the bottom of the system based on the velocity and temperature measurements at selected
locations in the system domain. Although the natural convection is three-dimensional in many
practical situations, the present two-dimensional example facilitates the demonstration of the
Karhunen–Lo�eve Galerkin procedure as applied to the feedback control synthesis. Extension
of the subsequent analysis to three-dimensional problems is trivial. The governing equations
for the system may be written in dimensionless variables as follows:

∇ · v=0 (1)

@v
@t
+ v · ∇v=−∇P + Pr∇2v+ RPr T j (2)

@T
@t
+ v · ∇T =∇2T (3)

with the relevant initial and boundary conditions

t =0; v= v0; T =T0 (4)

x=± 1; v=0;
@T
@x
=0 (5)

y=1; v=0; T =0 (6)

y=−1; v=0;
@T
@y
=− dy

k(T ∗
H − T ∗

C )
q(x; t) (7)

where v0 and T0 are the initial velocity and temperature �elds. The dimensionless variables
are de�ned by the following relations, where the superscript asterisk denotes dimensional
quantities

x=
x∗

dx
; y=

y∗

dy
; t=

�t∗

d2y
; v=

dyv∗

�
; T =

T ∗ − T ∗
C

T ∗
H − T ∗

C
; P′=

d2y P
∗

��2
(8)

where T ∗
C is the dimensional temperature at the top boundary, T ∗

H is the nominal bottom
temperature which is determined by the heat �ux at the bottom or the Rayleigh number, �
is the thermal di�usivity, k is the thermal conductivity, dx is the half-width and dy is the
half-depth of the cavity. The modi�ed pressure P is given by

P=P′ − (T ∗
C − T ∗

ref )
d3y
�2
�gy (9)

where T ∗
ref is the reference temperature de�ned by

T ∗
ref =

1
2 (T

∗
H + T

∗
C ) (10)
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The dimensionless group R is the Rayleigh number and Pr is the Prandtl number de�ned as
follows:

R= �g
(T ∗
H − T ∗

C )d
3
y

��
; Pr=

�
�

(11)

where � is the thermal expansion coe�cient, � is the kinematic viscosity and g is the grav-
itational constant. Combining Equations (7)–(11), we may rewrite the Rayleigh number in
terms of the average heat �ux q0

R= �g
2d4y q0
k��

(12)

where

q0≡ 12
∫ 1

x=−1
q(x; t) dx (13)

The set of Equations (1)–(3) is solved by using the Chebyshev pseudospectral method em-
ploying (40× 20) grids, which is tested and found to be su�cient to resolve the �elds. The
details of the Chebyshev pseudospectral method as applied to the Boussinesq equation are
explained in Park and Chung [9].

3. KARHUNEN–LO�EVE GALERKIN PROCEDURE

The Karhunen–Lo�eve Galerkin procedure consists of the following three basic steps: prepa-
ration of various velocity and temperature �elds, extraction of empirical eigenfunctions from
these �elds, construction of the low-dimensional dynamic model using empirical eigenfunc-
tions.

3.1. Preparation of velocity and temperature �elds

Since the empirical eigenfunctions, which constitute the space for the low-dimensional dy-
namic model, are expressed linearly in terms of velocity and temperature �elds [5, 6], the
velocity and temperature �elds must be prepared such that they fully characterize the system
dynamics. We assume that the heat �ux function q(x; t) can be expressed as

q(x; t)=
N∑
n=1
A(t) cos

[
(n− 1)�(x + 1)

2

]
(n=1; 2; : : : ; N ) (14)

Next, we solve the system governing equations, Equations (1)–(3), with q(x; t)=
A(t) cos[(n−1)�(x+1)=2] and record the velocity and temperature �elds at a regular time in-
terval until t= tf . These recordings of the velocity and temperature �elds are used later in the
Karhunen–Lo�eve decomposition to extract the empirical eigenfunctions. With (A; n)= (15; 1),
we integrate Equations (1)–(3) from t=0 until t= tf (= 0:5) to obtain a hundred velocity
and a hundred temperature �elds, respectively. Repeating this procedure with (A; n)= (15; 2);
(15; 3); : : : ; (15; 10); (−15; 1); : : : ; (−15; 10), we obtain two thousand velocity and two thousand
temperature �elds. To characterize the dynamic behaviour of the system better, the set of
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these �elds are reinforced by adding another one thousand velocity and one thousand temper-
ature �elds which are obtained by solving Equations (1)–(3) with A(t)=15 sin(n�t=tf ) and
n=1; 2; : : : ; 10, respectively. In this way we obtain a set of three thousand velocity �elds and
a set of three thousand temperature �elds, from which the velocity and temperature empirical
eigenfunctions are to be extracted. The detailed rationale behind the above procedure can be
found in Park and Cho [5] and Park and Lee [6].

3.2. Determination of empirical eigenfunctions

As explained in Park and Cho [5] and Park and Lee [6], the empirical eigenfunctions of the
Karhunen–Lo�eve decompositions are obtained by solving the following integral equations.

∫
K(v)(x;x′)M(x′) dx′= �MM(x) (15)

∫
K (T )(x;x′)’(x′) dx′= �T’(x) (16)

where M(x) and ’(x) are the velocity empirical eigenfunction and the temperature empirical
eigenfunction, respectively, and K(v) and K (T ) are the corresponding two-point correlation
functions de�ned as

K(v)(x;x′) =
1
M

M∑
j=1
v( j)(x)v( j)(x′) (17)

K (T )(x;x′) =
1
M

M∑
j=1
T ( j)(x)T ( j)(x′) (18)

Here v( j) is the jth velocity �eld, T ( j) is the jth temperature �eld and M (=3000) is the total
number of �elds which are obtained as explained in Section 3.1 and adopted in the Karhunen–
Lo�eve decomposition. The integral equations, Equations (15) and (16), can be solved by
using the Schmidt–Hilbert technique [5, 6, 10], where the eigenfunctions are represented as
linear combinations of the corresponding �elds. After solving Equations (15) and (16), we
get the velocity and temperature empirical eigenfunctions in the order of their importance in
characterizing the system. Figures 1(a) and (b) plot the accumulated normalized eigenvalues,
��Mi and ��

T
i , versus the number of velocity and temperature eigenfunctions. They show that

the convergence rates of the velocity eigenvalues �Mi and the temperature eigenvalues �Ti are
very rapid.

3.3. Construction of low-dimensional dynamic model

The Boussinesq set, Equations (1)–(3), is reduced to a set of ordinary di�erential equations
by assuming

v=
NM∑
n=1
an(t)M(n)(x) (19)
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932 H. M. PARK AND W. J. LEE

Figure 1. Accumulated normalized eigenvalues vs number of eigenfunctions: (a) velocity
eigenvalues �M , and (b) temperature eigenvalues �T .

T =
NT∑
n=1
bn(t)’(n)(x) (20)

where M(n) is the nth velocity eigenfunction and ’(n) is the nth temperature eigenfunction.
Substituting Equations (19) and (20) into Equations (1)–(3) and applying the Galerkin prin-
ciple which enforces the residual to be orthogonal to each of the basis functions, Equations
(1)–(3) with the relevant boundary conditions are reduced to the following sets of ordinary
di�erential equations

Mj
daj
dt
+
NM∑
l=1

NM∑
m=1
alamQjlm + Pr

NM∑
l=1
Hjlal − RPr

NT∑
l=1
blSjl=0 (21)

Nj
dbj
dt
+
NM∑
l=1

NT∑
m=1
albmRjlm +

NT∑
l=1
Ljlbl=

dy
k(T ∗

H − T ∗
C )

∫ 1

x=−1
q(x; t)’j(x; y=−1) dx (22)

In the above equations

Mj ≡
∫
�
M( j) · M( j) d�; Qjlm≡

∫
�
M( j) · (M(l) · ∇M(m)) d�
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Hjl ≡
∫
�
(∇M( j)) : (∇M(l))T d�; Sjl≡

∫
�
’(l)�v( j) d�

Nj ≡
∫
�
’2( j) d�; Rjlm≡

∫
�
(M(l) · ∇’(m))’( j) d�

Ljl ≡
∫
�
∇’(l) · ∇’( j) d�

(23)

where �u( j) and �
v
( j) are the x- and y-component of the jth velocity eigenfunction and � is the

system domain. The accuracy of the low-dimensional dynamic model improves as the number
of empirical eigenfunctions employed (i.e. NM and NT ) increases up to the optimal number.
But further increase of number of eigenfunctions beyond the optimal number does not always
improve the accuracy because the empirical eigenfunctions with very small eigenvalues are
usually contaminated with round-o� errors [5, 6, 8]. A convenient guideline for the determi-
nation of the optimal number is that one minus the sum of the normalized eigenvalues of the
eigenfunctions employed in the low-dimensional model should be approximately the same as
the inherent numerical error, i.e. the sum of the truncation and round-o� errors. The optimal
numbers of the velocity and temperature eigenfunctions for the set of Equations (21) and (22)
are found to be NM =19 and NT =32. Employing these numbers of empirical eigenfunctions,
the relative error of the low-dimensional dynamic model with respect to the exact numerical
solution of the Boussinesq equation is found to be less than 2% for various heat �ux q(x; t).

4. FEEDBACK CONTROL SYNTHESIS

The optimal state feedback controller determines the control inputs of the system, i.e. the
spatial distribution of heat �ux at the bottom, on the basis of the partial observations of the
present velocity and temperature �elds. Since the LQR theory requires the complete state of
the system to determine the control inputs, it is necessary to reconstruct the complete state
of the system from the partial measurements using an estimator such as the Kalman �lter.
Therefore, the two basic steps in the feedback control synthesis is the state identi�cation and
the LQR. In the sequel, we address the state identi�cation and the construction of feedback
control for the following two problems.
Problem A: We want to determine a spatial distribution of heat �ux at each moment, q(x; t),

that drives the system to a preset constant state promptly in an optimal manner, based on the
velocity and temperature measurements at certain locations. Namely,
Minimize:

J =
1
2

∫ tf

0

∫
�
(v(x; t)− ve(x))2 +!T (T (x; t)− Te(x))2 d�dt

+
�
2

∫ tf

0

∫ 1

x=−1
(q(x; t)− qe(x))2 dx dt (24)

where ve(x) and Te(x) are the preset velocity and temperature �eld and !T is a weighting
factor. The steady velocity and temperature �eld when q(x; t)= qe(x)=5 cos[(3�=2)(x+(2=3))]
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934 H. M. PARK AND W. J. LEE

are chosen as ve(x) and Te(x). The present states v(x; t) and T (x; t) are estimated by means
of the Kalman �lter based on the velocity and temperature measurements at the selected
locations.
Problem B: In this problem, we determine an optimal q(x; t) that enforces the system

to follow a prescribed trajectory promptly based on the velocity and temperature measure-
ments at the selected locations. The optimal q(x; t) is determined according to the crite-
rion given by Equation (24). For this problem, ve(x) and Te(x) are the stationary �elds
when q(x; t)=5 cos[(3�=2)(x + (2=3))] sin(2�t=tf ). The present states v(x; t) and T (x; t) are
determined by the Kalman �lter to be derived later.

4.1. State identi�cation

In the present investigation, we employ the extended Kalman �lter [4] for the purpose of state
identi�cation. We rewrite the low-dimensional dynamic model, Equations (21) and (22), in
the following standard form:

dx
dt
= f +D · q+ �(t) (25)

where

x= (a1; a2; : : : ; aNM ; b1; b2; : : : ; bNT )T

= (x1; x2; : : : ; xNM+NT )T (26)

f =



−
NM∑
l=1

NM∑
m=1
alam

Qjlm
Mj

− Pr
NM∑
l=1

Hjl
Mj
al + RPr

NT∑
l=1

Sjl
Mj
bl

−
NM∑
l=1

NT∑
m=1
albm

Rjlm
Nj

−
NT∑
l=1

Ljl
Nj
bl


 (27)

D=
dy

k(T ∗
H − T ∗

C )




O

Z11
N1

Z21
N1

· · · ZN1
N1

Z12
N2

Z22
N2

· · · ZN2
N2

...
...

Z1; NT
NNT

Z2; NT
NNT

· · · ZN;NT
NNT




(28)

q= (q1 q2 · · · qN )T (29)
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Figure 2. Measurement locations.

and

Znj ≡
∫ 1

x=−1
cos

[
(n− 1)�(x + 1)

2

]
’j(x; y=−1) dx (30)

q(x; t) =
N∑
n=1
qn(t) cos

[
(n− 1)�(x + 1)

2

]
(31)

In Equation (28), O is a zero matrix of size (NM;N ). The velocity and temperature measure-
ments at the MO locations, depicted in Figure 2, may be represented as follows:

v∗(xm; ym; t) =
NM∑
j=1
ajM( j)(xm; ym) (m=1; 2; : : : ; MO) (32)

T ∗(xm; ym; t) =
NT∑
j=1
bj’( j)(xm; ym) (m=1; 2; : : : ; MO) (33)

The above equation may be rewritten as

y=Cx+ W (34)

where

y= (u∗(x1; y1); : : : ; u∗(xMO; yMO); v∗(x1; y1); : : : ; v∗(xMO; yMO);

T ∗(x1; y1); : : : ; T ∗(xMO; yMO))T (35)
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and (u; v) is the components of the velocity vector v. In Equations (25) and (34), ^ is
the Gaussian white modelling noise and W is the Gaussian white measurement noise. Using
Equations (25) and (34), the performance function for the identi�cation of the velocity and
temperature �elds is expressed as follows:

J =
1
2
[x(0)− x0]TP−1

0 [x(0)− x0]

+
1
2

∫ tf

0
{[ẋ − f −D · q]TR[ẋ − f −D · q]}dt

+
1
2

∫ tf

0
{[y −Cx]TQ[y −Cx]} dt (36)

where the weighting matrices P−1
0 , R and Q can be chosen to re�ect the errors in the initial

estimate, the model and the measurement device, respectively. The standard procedure to
derive the sequential identi�cation equation is as follows [4]. The performance function (36) is
minimized using a variational method to yield a two-point boundary value problem. Applying
the Riccati transformation to the resulting two-point boundary-value problem, the following
Kalman �ltering equation is derived

dx
dt
= f +D · q+ PCTQ[y −Cx] (37)

dP
dt
=PAT +APT +R−1 − PCTQCP (38)

where P is the error covariance matrix. Because the length of the vector x is (NM +NT ), the
covariance matrix P is of the size (NM + NT;NM + NT ) and symmetric. Thus, the number
of equations to be solved to obtain P is (NM + NT )(NM + NT + 1)=2. The matrix A in
Equation (38) is the Jacobian matrix evaluated at the previous estimation

A≡ @f
@x

(39)

Speci�cally, its components are given by

@fj
@xi

=−
NM∑
m=1
xm
Qjim
Mj

−
NM∑
l=1
xl
Qjli
Mj

− Pr Hji
Mj

(j=1; 2; : : : ; NM ; i=1; 2; : : : ; NM) (40)

@fj
@xi

=
RPrSj; i−NM

Mj
(j=1; 2; : : : ; NM ; i=NM + 1; : : : ; NM + NT ) (41)

@fj
@xi

=−
NT∑
m=1
xNM+m

Rj−NM; i;m
Nj−NM

(j=NM + 1; : : : ; NM + NT ; i=1; 2; : : : ; NM) (42)
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@fj
@xi

=−
NM∑
l=1
xl
Rj−NM; l; i−NM
Nj−NM

− Lj−NM; i−NM
Nj−NM

(j=NM + 1; : : : ; NM + NT ; i=NM + 1; : : : ; NM + NT ) (43)

The initial values of P and Q are assumed to be P=0:9I and Q=(1=0:0025)I, respectively.
The model error R−1 is neglected in the present computation. To assess the performance of
the Kalman �lter, Equations (37) and (38), we consider �rst the problem A, de�ned in the
previous section, when there is a large error in the initial estimation of the velocity and tem-
perature �elds. Figure 3 shows the temporal variations of v2 and T 2 integrated over the domain
when we use the Kalman �lter equation (Equations (37), (38)) where the measurements at the
selected locations indicated in Figure 2 are employed and when we use the low-dimensional
dynamic model (Equation (25)) which do not exploit the measurements, respectively. The
velocity and temperature measurements are assumed to have 3% relative error which is
Gaussian randomly distributed. It is shown that the Kalman �lter predicts the velocity and
temperature �elds very accurately even though quite inaccurate initial estimation is adopted.
Figures 4(a)–4(c) show the velocity and temperature trajectories at selected points, which
are indicated at the top of the �gure, to rea�rm the performance of the Kalman �lter.
Figures 5 and 6(a)–6(c) show similar results of the state estimation for the problem B.
The Kalman �lter is shown to estimate the system state accurately after a very short transient
period, even with 3% measurement error.

4.2. Optimal state feedback control

In this section, we consider the combination of feedback control with state estimation. It is
based on the separation principle which states that the design of an optimal control problem
with measurement and model uncertainty can be treated by �rst performing a Kalman �lter
estimate of the states and then developing the optimal control law exploiting the estimated
states [3]. The application of the separation principle allows for the practical implementation of
feedback control concepts to systems with signi�cant measurement uncertainties. An optimal
feedback controller is synthesized by using the linear regulator theory [3]. Our purpose is to
regulate the system about an equilibrium or stationary state when we have an initial o�set.
In other words, we try to return the velocity and temperature �elds to a preset constant value
or make the �elds follow a prescribed trajectory promptly when there are initial deviation
or disturbance. The feedback control law may be derived by applying LQR to the low-
dimensional model, Equation (25), as follows. The equilibrium or stationary state xe satis�es

dxe
dt
= f(xe) +D · qe (44)

where qe(x; t)=5 cos[(3�=2)(x + (2=3))] for the problem A and qe(x; t)=5 cos[(3�=2)(x +
(2=3))] sin(2�t=tf ) for the problem B, respectively. The relation between qe(x; t) and qe(t) is
given by Equation (31). We de�ne the following deviation variables:

X≡ x − xe (45)

�= q − qe (46)
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Figure 3. Performance of the Kalman �lter for the problem A (3% measurement error).
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Figure 4. Estimated velocity and temperature from the Kalman �lter at selected locations, indicated at
the top of the �gure, for the problem A (3% measurement error): (a) u, (b) v and (c) T .
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Figure 4. (Continued).

where x is the state vector de�ned in Equation (26). If we subtract Equation (44) from
Equation (25) and linearize the non-linear vector function f around xe, we �nd the following
equation:

dX
dt
=A ·X+D · � (47)

X(t=0)=X0 (48)

where the matrix A is given by Equation (39) and X0 is the initial deviation. The performance
function de�ned for the optimal feedback controller, Equation (24), may be rewritten in terms
of the deviation variables by exploiting the orthogonality of empirical eigenfunctions as

J =
1
2

∫ tf

0
XTNX dt +

�
2

∫ tf

0
�2 dt (49)

Here, N is a diagonal matrix de�ned as

N=diag(M1; M2; : : : ; MNM ;!TN1; !TN2; : : : ; !TNNT ) (50)

where Mi and Ni are given by Equation (23). The parameter � in Equation (49), which
indicates the cost for the control action, is set to be 1.0× 10−6 and the weighting factor
!T =50:0 in the present work. The performance function J in Equation (49) is minimized by
using a variational method after introducing the adjoint vector [=(�1; �2; : : : ; �NM+NT )T such
that

J =
1
2

∫ tf

0
XTNX dt +

�
2

∫ tf

0
�2 dt −

∫ tf

0
[ ·

(
dX
dt

−A ·X −D · �
)
dt (51)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:927–949



KARHUNEN–LO�EVE GALERKIN PROCEDURE 941

Figure 5. Performance of the Kalman �lter for the problem B (3% measurement error).
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Figure 6. Estimated velocity and temperature from the Kalman �lter at selected locations for the problem
B (3% measurement error): (a) u, (b) v and (c) T .
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Figure 6. (Continued).

Taking a variation of Equation (51) and integrating by parts the variational equation, we �nd
the following set of adjoint equations and an expression for the optimal control:

d[
dt
=−AT[−NTX (52)

[(t= tf ) = 0 (53)

�=−1
�
DT · [ (54)

The resulting splitted boundary value problem, Equations (47), (48), (52)–(54), may be
solved by introducing the following Riccati transformation:

[=SX (55)

where S is a matrix. Substituting Equation (55) into Equation (52) and exploiting Equations
(47) and (54), we �nd that the matrix S satis�es the following equation:

dS
dt
+ S ·A − 1

�
S · [(D ·DT) · S] +AT · S+N=0 (56)

S(t= tf ) = 0 (57)

Once S is obtained by solving Equation (56), the optimal control � is given in terms of the
deviational state X by exploiting Equations (54) and (55) as follows:

�=−1
�
(DT · S) ·X (58)

which is the sought optimal feedback controller. In actual implementation, we adopt the steady
solution of Equation (56) in Equation (58). Then, the feedback control strategy is quite

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:927–949



944 H. M. PARK AND W. J. LEE

Figure 7. Feedback control with state identi�cation for the problem A, with 3%
measurement error. (a)

∫
v2 d� and (b)

∫
T 2 d�.
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Figure 8. Velocity and temperature trajectories at selected locations
for the case of Figure 7: (a) u, (b) v and (c) T .
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Figure 8. (Continued).

straightforward. Once we estimate the velocity and temperature �elds in the system domain
using measurements, the deviation vector X is determined by taking the di�erence between
the present state of the system x and the target state xe. Since (DT · S) in Equation (58) is
given a priori, the deviation vector X gives the deviational input �. The control input q is
then determined by

q(t)= qe + �(t) (59)

Figure 7 shows the performance of the feedback controller for the problem A, when the
velocity and temperature are measured at the measurement points shown in Figure 2 with 3%
relative measurement error. It is shown that the feedback controller drives the system promptly
to the preset velocity and temperature �elds. For comparison, the dynamic behaviour of the
velocity and temperature �elds without feedback control action is also plotted. More detailed
information about the performance of the feedback controller can be found in Figure 8(a)
–8(c), where the velocity and temperature variations at selected points are plotted for the
case of Figure 7. Similar results for the problem B are plotted in Figures 9(a), 9(b) and
10(a)–10(c), where it is demonstrated that the feedback controller enforces the velocity and
temperature �elds to the desired path in spite of the initial deviation and the 3% relative
measurement error.

5. CONCLUSION

An optimal state feedback control is synthesized for the Rayleigh–B�enard convection, that
enforces the intensity of convection to a preset constant value or makes it follow a pre-
scribed trajectory promptly regardless of initial deviation or disturbance by exploiting the
velocity and temperature measurements at selected locations. The separation principle [3]
allows these control problems to be solved by means of the Kalman �ltering and the lin-
ear quadratic regulator (LQR). However, the straightforward application of these techniques
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Figure 9. Feedback control with state identi�cation for the problem B, with 3%
measurement error: (a)

∫
v2 d� and (b)

∫
T 2 d�.
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Figure 10. Velocity and temperature trajectories at selected locations for the case
of Figure 9: (a) u, (b) v and (c) T .

to the Boussinesq equation is never feasible due to the tremendous amount of computer
time and memory required to solve the covariance equations. This di�culty is circumvented
in the present investigation by employing the Karhunen–Lo�eve Galerin procedure [5, 6, 8]
that reduces the Boussinesq equation to a minimal set of ordinary di�erential equations. The
performance of the state feedback controller and estimator based on this low-dimensional
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Figure 10. (Continued)

dynamic model is assessed with several numerical experiments and is found to yield satisfac-
tory results.
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